On universality of stress-energy tensor correlation functions in supergravity
نویسندگان
چکیده
منابع مشابه
On universality of stress-energy tensor correlation functions in supergravity
Using Minkowski space AdS/CFT prescription we explicitly compute in the low-energy limit two-point correlation function of the boundary stress-energy tensor in a large class of type IIB supergravity backgrounds with regular translationally invariant horizon. The relevant set of supergravity backgrounds includes all geometries which can be interpreted via gauge theory/string theory correspondenc...
متن کاملCorrelation Functions of the Energy Momentum Tensor on Spaces of Constant Curvature
An analysis of one and two point functions of the energy momentum tensor on homogeneous spaces of constant curvature is undertaken. The possibility of proving a c-theorem in this framework is discussed, in particular in relation to the coefficients c, a, which appear in the energy momentum tensor trace on general curved backgrounds in four dimensions. Ward identities relating the correlation fu...
متن کاملForm Factors and Correlation Functions of the Stress – Energy Tensor in Massive Deformation of the Minimal Models
The magnetic deformation of the Ising Model, the thermal deformations of both the Tricritical Ising Model and the Tricritical Potts Model are governed by an algebraic structure based on the Dynkin diagram associated to the exceptional algebras En (respectively for n = 8, 7, 6). We make use of these underlying structures as well as of the discrete symmetries of the models to compute the matrix e...
متن کاملUniversality of the shear viscosity in supergravity
Kovtun, Son and Starinets proposed a bound on the shear viscosity of any fluid in terms of its entropy density. We argue that this bound is always saturated for gauge theories at large ’t Hooft coupling, which admit holographically dual supergravity description.
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters B
سال: 2005
ISSN: 0370-2693
DOI: 10.1016/j.physletb.2005.01.052